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Abstract
A brief review of two theoretical methods for calculating the linewidth of surface
phonons is presented with specific application to the low-Miller-index surfaces
of Ag, Cu, and Al. In the quasi-analytic method, linewidths are calculated
by treating the cubic term of a reliable interatomic potential in first-order,
time-dependent perturbation theory. In molecular dynamics (MD) simulations,
linewidths are obtained from appropriate correlation functions and include the
fully anharmonic contribution of the interaction potential. Surface relaxations
and phonon frequencies calculated in the harmonic approximation, using
selected many-body interatomic potentials, are found to be in good agreement
with results from experimental data and ab initio calculations. At 300 K, the
surface phonon linewidths range approximately between 1 and 0.1 THz, and are
found to be in reasonable agreement with the values deduced from experiments.
Some disagreement is found between results from perturbative methods and MD
simulations. For the low-Miller-index surfaces of Ni, available results from MD
simulations also summarized.

1. Introduction

At very low temperatures, phonons are expected to be good eigenstates of lattice vibrations
in solids having characteristic frequencies, displacement patterns (polarizations), and infinite
lifetime (negligible linewidth). With increasing temperatures, anharmonic effects are expected
to shift the phonon frequencies and cause the linewidths to broaden [1]. The interest in
studies of phonon linewidth thus stems from the information that it is expected to provide
about anharmonicity in the interatomic potential. In the case of surface phonons there is the
additional question of whether surface anharmonicity is larger than that in the bulk solid.
While experimental observations of phonon linewidth and its temperature dependence are
non-trivial because of the inherent difficulties in the extraction of the different contributions
to the linewidths, theoretical calculations are also challenging as they require computations
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with higher-order derivatives of a many-body interaction potential, and extensive summations
and numerical evaluation of contributions from various parts of the surface Brillouin zone.
Additionally, this interaction potential should be capable of providing the actual equilibrium
configuration and vibrational dynamics of the surface and bulk atoms of the solid. Demands on
the potential aside, the ground work for such calculations was laid some time ago using the one-
phonon scattering theory [2–5]. It was shown [4,5] that the phonon linewidth may be obtained
from first-order perturbation treatment of the cubic terms of the interaction potential, while the
calculation of the frequency shift required inclusion of the quartic term in the anharmonic part
of the potential, making the latter a daunting task in quasi-analytic calculations. Perturbative
calculation of the cubic terms for realistic systems which need complex and many-body
interaction potentials is in itself non-trivial. It is thus not surprising that only a few such
studies have been carried out for bulk metals [6–8] and their surfaces [9, 10]. On the other
hand, with the advances in computer simulation techniques, extraction of surface phonon
linewidth (and frequency shifts) from molecular dynamics (MD) simulations has become
much more feasible [11–20]. The advantage of MD simulation is that it takes into account the
full anharmonicity afforded by the interaction potential. The drawback is that the extraction
of the linewidth from the collected statistics is not straightforward. The very presence of the
interactions between the phonons introduces new and overlapping features in the calculated
phonon spectral densities making the delineation of the linewidth ambiguous, particularly with
increasing temperatures. The availability of the two techniques is thus helpful both in providing
verification and in setting the limits of validity, each for the other. In this regard, it is fortunate
that both types of technique have been applied to the low-Miller-index surfaces of Ag, Cu,
and Al, and that selected experimental data are also available [10, 20–22] for these. To our
knowledge, for Ni surfaces such information is available only from MD simulations [17, 19].
The aim in this work is to provide a summary of the status of theoretical calculations of the
surface phonon linewidths of these specific metal surfaces. Instead of an exhaustive review in
which the wavevector and temperature dependence of the linewidth is included, the objective
here is to focus on zone-boundary surface phonons, at 300 K. Details of the wavevector
dependence of the linewidths of modes like the Rayleigh wave can be found in particular
publications [9, 10, 18, 20]. The temperature dependence of the linewidth may be found in
most of the cited publications.

In the next two sections we describe the main features of the theoretical techniques. This
is followed in section 4 with the results for surface relaxation, and for the frequencies and
linewidths of the zone-boundary surface phonons of the (100), (111), and (110) surfaces of
Cu and Ag, and the (100) and (111) surfaces of Al. Also included in section 4 are results for
the linewidths of surface phonons of the low-Miller-index surfaces of Ni. The conclusions are
summarized in section 5.

2. Linewidth calculations from perturbation theory

As already mentioned, the standard recipe for the calculation of the phonon linewidth quasi-
analytically is through the usage of time-dependent perturbation theory. The main idea is to
calculate the decay rate of the population of any phonon mode i. At temperature T the mean
population of phonon mode i is given by the Bose distribution:

〈ni〉 =
[

exp

(
h̄ωi

kT

)
− 1

]−1

. (1)
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If the population of a certain mode o is driven out of equilibrium to a value no, then the
population excess begins to decay according to

dno

dt
= −γ [no − 〈no〉]. (2)

Within the harmonic approximation, there are no phonon–phonon interactions, and the
excited phonon state cannot directly transfer its energy excess to other phonon modes. With
increasing temperature, the anharmonic terms of the potential become important and phonon–
phonon interactions become important. To calculate the decay constant γ by time-dependent
perturbation theory, the perturbation is taken to be the third-derivative (so-called cubic) terms in
the Taylor series expansion of the interatomic potential � with respect to equilibrium atomic
coordinates. This is obviously an approximation. In reality, the quartic and higher-order
terms may also contribute to the linewidth. However, inclusion of such terms would render
the calculations intractable, for the present. A further assumption is that there are no other
processes contributing to the linewidth.

For a slab with the Z-axis perpendicular to the surface, we can express the perturbation as

V̂3 = 1

6

∑
α,β,γ

∑
��k,�zk

∑
��n,�zn

∑
��p,�zp

[
∂3�

∂up,γ ∂un,β ∂uk,α

]
e

ûp,γ ûn,β ûk,α. (3)

Here �� is a lattice vector of the 2D direct lattice, �z is an index labelling layers, uk,α represents
the α = x, y or z Cartesian component of the displacement from equilibrium of the atom at
site k, and e indicates that the derivative is to be evaluated at the equilibrium configuration. In
the above equation, the displacement-coordinate operator for site (�, �z) is given by

ûα(��, �z) =
∑

�q

∑
j

′
[

h̄

2mω(�q, j)N

]1/2

eα(�z|�q, j)ei�q·[��+ �K(�z)](â+(−�q, j) + â(�q, j)). (4)

Here �q is a vector of the 2D reciprocal lattice in the first Brillouin zone, j labels the
particular phonon mode for a given �q, the prime on the second sum means excluding the
translational modes at �q = 0, ω(�q, j) is the angular frequency of the particular mode, N is the
number of primitive 2D cells subjected to the periodic boundary conditions, �K(�z) represents
any shift (not a lattice vector) parallel to the slab surface of the atomic sites for layer �z relative
to the lattice of the centre layer of the slab, and a and a+ are, respectively, the lowering and
raising operators for the particular phonon mode. The quantities eα(�z|�q, j) are components
of the eigenvectors of the dynamical matrix for the (�q, j) phonon mode.

The detailed expressions given below are those used in [23, 25]. They are similar, in
principle, to those employed by Franchini et al [9] in related studies. From Fermi’s golden
rule of time-dependent perturbation theory, we have

dno

dt
=

∑
K

2π

h̄
|〈K|V̂3|M〉|2δ(EK − EM), (5)

where M labels an initial state with mode o excited and the sum extends over all final states
K . There are two kinds of process [9,25] that contribute to the right-hand side of equation (5):
a splitting process having ωo = ωa + ωb and matrix elements of the form

〈nb + 1, na + 1, no − 1|V̂3|nonanb〉; (6)

and a difference process having ωo = ωa − ωb and matrix elements of the form

〈nb − 1, na + 1, no − 1|V̂3|nonanb〉. (7)

One may visualize a splitting process as one in which the phonon mode of interest decays
into a pair of phonons of frequency ωa and ωb, while in the difference process the phonon
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mode of interest may fuse with another phonon of frequency ωb to produce a third phonon
of frequency ωa . There are thus two specific contributions to the decay constant: γdif and
γsp. In working out expressions for γdif and γsp, the inverses of these processes must also be
considered. After some algebra, the following expressions are obtained:

γdif = 36A

2πh̄

∫
BZ

d2 �qa

∫
BZ

d2 �qb

∑
ja

∑
jb

|M(−�qa, ja; �qb, jb; �qo, jo)|2

×
(∑

�G
δ[(−�qa + �qb + �qo) − �G]

)
δ(h̄ωa − h̄ωb − h̄ωo)(〈nb〉 − 〈na〉), (8)

and

γsp = 36A

2πh̄

∫
BZ

d2 �qa

∫
BZ

d2 �qb

∑
ja

∑
jb

|M(−�qa, ja; −�qb, jb; �qo, jo)|2

×
(∑

�G
δ[(�qa + �qb − �qo) − �G]

)
δ(h̄ωa + h̄ωb − h̄ωo)(〈na〉 + 〈nb〉 + 1) (9)

where A is the area of a primitive cell of the 2D direct lattice, G is a lattice vector of the 2D
reciprocal lattice, and the matrix element M is given by

M(�q1, j1; �q2, j2; �q3, j3) = 1

6

(
h̄

2m

)3/2

(ω(�q1, j1)ω(�q2, j2)ω(�q3, j3))
−1/2

×
∑
α,β,γ

∑
�zk

∑
�zn

∑
�zp

∑
�hnk

∑
�hpk

[
∂3�

∂upγ ∂unβ ∂ukα

]
o

ei�q2·�hnk ei�q3·�hpk

× eα(�zk|�q1, j1)eβ(�zn|�q2, j2)eγ (�zp|�q3, j3)e
i�q1· �K(�zk)ei�q2· �K(�zn)ei�q3· �K(�zp). (10)

Here �hnk = ��n − ��k is the 2D direct-lattice vector locating cell n relative to cell k.
Speaking strictly, equations (8) and (9) are valid only as long as modes a and b maintain

their thermal average populations. It is assumed that, at least at the onset, the coupling to
the thermal reservoir is strong enough to maintain these populations while nevertheless not
providing an important alternative path for decay of the population excess in mode o. The
persistent summations in the above equation attest to the complexities of these calculations.
Details of evaluations of the lattice sums may be found in [9, 23, 24].

Once the total decay constant is calculated from the above equations, the frequency
halfwidth of the phonon mode is readily obtained by considering the halfwidth of the power
spectral density of the Fourier transform of a decaying oscillation of the form

f (t) = 0, t < 0; (11)

f (t) = A cos(ωot)e
−γtot t , t > 0. (12)

This results in a frequency halfwidth 
 of ≈0.1125γ .

3. Linewidth from molecular dynamics simulations

In standard MD simulations the positions and velocities of atoms are collected for a chosen
time period by solving numerically Newton’s equations of motion using an efficient algorithm
like Nordsieck’s. For simulations of surface systems the MD cell generally consists of few
thousand atoms, arranged in about 10–30 layers with periodic boundary conditions applied
parallel to the surface. The exact size of the system is chosen so as to avoid finite-size effects.
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For the systems of interest, a time step of about 1 fs is found to be suitable. Initially a constant-
temperature, constant-pressure (NPT ) simulation is performed for a bulk system to calculate
the lattice constant at that temperature. The surface system is then created with the lattice
constant corresponding to the temperature of interest. Under conditions of constant volume
and constant temperature (NV T ) this surface system is equilibrated to the desired temperature.
Next, the system is isolated and allowed to evolve in a much longer run of about few hundred
picoseconds in which its energy remains constant (NV E) and statistics on the positions and
velocities of the atoms are recorded.

Surface phonon spectral densities are calculated in the one-phonon approximation, using

gαα( �Q‖, ω) =
∣∣∣∣
∫

eiωt

( Nl∑
j=1

e
�Q‖· �R0

j vjα(t)

)
dt

∣∣∣∣
2

(13)

where gαα is the spectral density for displacements along direction α (=x, y, z) of atoms in
layer l, Nl is the number of atoms in the layer, �Q‖ is the two-dimensional wavevector parallel
to the surface, �R0

j is the equilibrium position of atom j whose velocity is �vj . Instead of the
velocity auto-correlation function in the above equation, phonon spectral densities may also
be calculated from the displacement auto-correlation function [18].

The raw spectrum obtained according to the above equation is generally smoothed by
convoluting it with a Gaussian function of width δ, which eliminates any noise caused by the
finite number of terms in the above summation. In such cases the function

f (ω) =
∫

g(ω′)e−(ω′−ω)2/δ2
dω′ (14)

has peaks of width greater than those in g(ω). If the original peak in g(ω) is a Gaussian with
width �, then it can be shown that the resulting peak in f (ω) is also a Gaussian, with width
�′. The exact relation between these widths is

� =
√

�′2 − δ2. (15)

An equation like the one above is used to extract the true width of the phonon spectral density
�, since most of the peaks are Gaussian-like.

3.1. The interaction potential

A vital ingredient for all calculations is the interaction potential �, be it for calculating the
decay constants via perturbation theory or for solving Newton’s equation in MD simulations.
In the set of theoretical papers of interest here, the choice of the interaction potential has ranged
from those based on pair potentials [9,10] and parametrized by force constants in a Born–von
Karman-like scheme, or simply in a Morse form [20], to those [12–20] obtained from many-
body potentials of the embedded-atom (EAM) form [26,27]. In a recent perturbation theoretical
calculation [23, 24] usage has been made of an analytic form of the EAM potential by Mei
et al [28] which facilitates the calculation of the second and third derivatives of the potential
� for arbitrary choices of the atomic positions. The range of interactions is generally taken
to extend to third- or fourth-nearest neighbours, and appears to be adequate. Semiempirical,
many-body potentials of the EAM type, for example, are expected to be sufficient for describing
the structural and dynamical characteristics of Ag, Cu, and Ni bulk and surfaces [12,13,16,26],
and also to a great extent those of Al [18,27]. The same cannot be said of pair potentials, and
their application to metals has to be treated with caution.
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Table 1. Relaxation of the interlayer spacing of Cu surfaces as an illustrative example.

Surface Method �d12 (%) �d23 (%) �d34 (%) Reference

(100) EAM −1.25 −0.43 −0.09 [23]
EAM −1.44 −0.33 [26]
FP −3.02 + 0.08 −0.24 [33]
MEIS −2.0 + 1.0 [47]
SPLEED −1.2 + 0.9 [48]
LEED −2.1 + 0.45 [49]

(110) EAM −4.52 + 0.10 −0.54 [23]
EAM −4.93 + 0.23 [26]
FP −9.27 + 2.77 −1.08 [33]
LEED −8.5 + 2.3 [50]
HEIS −5.3 + 3.3 [50]

(111) EAM −1.23 −0.15 −0.06 [23]
EAM −1.39 −0.05 [26]
FP −1.27 −0.64 −0.26 [33]
MEIS −1.0 −0.2 0.0 [51]

4. Results and discussion

In this section a summary of the results for the low-Miller-index surfaces of Ag, Cu, Ni, and Al
is presented. First a brief account of the calculation of the structural properties of the surfaces
is provided. This is done to ensure that the surface is fully relaxed and that the equilibrium
positions are in reasonable agreement with accepted results. Such agreement implies reliability
of the selected interaction potential. Next, a summary of the lattice dynamical calculations, in
the harmonic approximation, for the frequencies of the surface phonons at the zone boundaries
of the surfaces of interest is provided. Since it would be repetitive to tabulate the results from
all related publications for surface relaxation and phonon frequencies, which are of secondary
interest to this work, we have chosen to include here the results from our recent calculations as
a representative illustration. A very good reason for doing this is that in this set of calculations
an analytic form of the EAM potential [28] was used to facilitate the calculation of the cubic
term. This particular form of the EAM potentials had previously not been tested for application
to surface properties of these metals. The good agreement with previous results attests to
the reliability of the interatomic potentials. Finally, results are presented for the calculated
linewidths of the surface modes. Results for the bulk modes are not discussed here, as the
focus is on surface vibrations.

4.1. Surface relaxations

With the analytic form of the EAM potential [28], equilibrium positions of surface atoms
are calculated using standard energy-minimization techniques [29]. The results, together
representative values from other calculations and from experiment, are given in table 1 for
the (100), (110), and (111) surfaces of Cu. These results are in good agreement with other EAM
calculations. The agreement with experiment, where different groups have found somewhat
varying values, is less satisfactory for (100) and (110), especially for �d23. For similar results
for all other surfaces of interest here, the reader is referred to the specific publications as cited
in table 2.
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Table 2. Calculated frequencies (ν) and frequency halfwidths (
) for surface phonons of Ag, Cu,
Al, and Ni. Also included are results from experiments and MD simulations, where available. All
quantities are in units of THz (1 THz = 4.136 meV).

Surface Point Mode ν ν (MD) ν (experiment) 
 
 (MD)

Cu(100) M̄ S1(z) 3.95 [24] 3.88 [12] 4.05 [43–45] 0.35 [24] 0.15 [12]
S2(z2) 5.16 [24] 4.99 [12] — 0.05 [24] 0.07 [12]

X̄ S1(y) 2.10 [24] 1.91 [12] — 0.21 [24] 0.09 [12]
S4(z) 3.01 [24] 2.91 [12] 3.24 [43–45] 0.10 [24] 0.08 [12]
S6(x) 6.04 [24] 5.77 [12] 6.10 [43–45] 1.10 [24] 0.25 [12]

Ag(100) M̄ S1(z) 2.68 [24] 2.78 [12] 2.40 [46] 0.11 [24] 0.09 [12]
S2(z2) 3.33 [24] 3.48 [12] — 0.14 [24] 0.11 [12]

X̄ S1(y) 1.45 [24] 1.55 [12] — 0.08 [24] 0.07 [12]
S4(z) 1.97 [24] 2.10 [12] 2.10 [46] 0.06 [24] 0.09 [12]
S6(x) 3.87 [24] 3.95 [12] — 0.26 [24] 0.17 [12]

Ni(100) M̄ S1(z) — 4.88 [17] 4.65 [35, 36] — 0.25 [17]
S2(z2) — 6.53 [17] 6.60 [35, 36] — 0.30 [17]

X̄ S1(y) — 2.62 [17] 0.20 [17] — 0.22 [17]
S4(z) — 3.85 [17] 3.96 [37, 38] — —
S6(x) — 7.60 [17] 7.56 [37, 38] — —

Al(100) X̄ S4(z) — 3.94 [20] 3.90 [20] — 0.12 [6]

Cu(110) Ȳ S5(y) 4.56 [24] 4.40 [13] — 0.09 [24] 0.15 [13]
S3(z) 2.96 [24] 2.90 [13] 2.90 [52] 0.13 [24] 0.10 [13]
S2(x) 2.46 [24] 2.40 [13] — 0.14 [24] 0.08 [13]
S1(y) 1.76 [24] 1.60 [13] — 0.10 [24] 0.10 [13]

Ag(110) Ȳ S5(y) 3.01 [24] 3.14 [15] 3.14 [53] 0.10 [24] 0.07 [15]
S3(z) 1.94 [24] 1.96 [15] 1.89 [53] 0.09 [24] 0.07 [15]
S2(x) 1.62 [24] — — 0.09 [24] —
S1(y) 1.21 [24] 1.32 [15] 1.21 [53] 0.07 [24] 0.08 [15]

Ni(110) X̄ S1(z) — 3.94 4.11 [37, 38] — 0.20 [17]
S2(y) — 4.80 5.07 [37, 38] — —
S7(x) — 7.43 6.80 [37, 38] — 0.30 [17]
MS0(x) — 4.18 4.26 [37, 38] — —

Ȳ S1(y) — 2.18 2.40 [37, 38] — 0.20 [17]
S2(x) — 3.07 3.48 [37, 38] — —
S3(z) — 3.59 3.70 [37, 38] — 0.40 [17]
S5(y) — 5.75 — — 0.30 [17]

Cu(111) M̄ L 6.71 [24] 6.51 [19] 6.77, 6.30 [54, 55] 0.61 [24] 0.25 [19]
SV 3.09 [24] 3.02 [19] 3.16, 3.22 [54, 55] 0.08 [24] 0.11 [19]

Ag(111) M̄ L 4.23 [24] 4.33 [19] — 0.46 [24] 0.20 [19]
SV 2.03 [24] 2.15 [19] 2.06 [57], 2.10 [56] 0.07 [24] 0.06 [19]

Ni(111) M̄ L — 8.88 [19] 8.79 [58] — 0.09 [19]
SV — 3.91 [19] 4.01 [58] — 0.04 [19]

Al(111) M̄ SV — — 3.65 [20] 0.07 [9] —

4.2. Phonon states in the harmonic approximation

Again, as representative calculations of phonon frequencies, we give here details from our
latest calculations. Basis states for the perturbation calculation were phonon states in the
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harmonic approximation obtained by solving the eigenvalue problem for the dynamical matrix
using routines for the eigenvalues and eigenvectors of a real, symmetric matrix from numerical
recipes [29]. For the slabs, the procedure of Allen and deWette [30,31] for transforming from
the dynamical matrix to a real, symmetric matrix was followed. The surface phonon frequencies
and eigenvector polarizations obtained for various special points on the 2D Brillouin zone
surface for 31-layer slabs with (100), (110), and (111) surfaces are given in table 2 together
with representative values from the literature. The calculated frequencies are in good agreement
with those obtained previously.

4.3. Phonon decay constants and linewidth

The results of calculations of the surface phonon linewidth from perturbation calculations are
presented in table 2. All results are for a phonon occupancy at 300 K. The table also includes
results from MD simulations and experiments, where available.

There are only a few experiments in which the linewidth of the surface phonons of Ag
and Cu, at the 2D Brillouin zone boundaries, have been measured. Using high-resolution
electron-energy-loss spectroscopy [21], the halfwidth for Cu(110) at Ȳ for the S3(z) mode
was reported to be 0.77 THz, significantly larger than results from perturbative methods or
from MD. However, this large value has remained controversial [42]. Experiments using He
scattering with time-of-flight detection [10] to measure the halfwidth for Ag(110) at Ȳ for
the S3(z) and S1(y) modes show a linewidth of 0.04 THz for both modes. These results on
Ag(110) are in good agreement with those from calculations.

For surface modes the halfwidth 
 in the calculations appears to be of the order of 0.1 THz
unless it is a resonance mode like S6. The case of S6 for Cu(100) is, however, puzzling as
the perturbation method produces a large value of 1.10 THz, while MD simulations yield
0.25 THz. We do not understand the reason for this disagreement, particularly since the two
methods produce very similar results for the same quantity for Ag(100). It is also interesting
to note that the longitudinal modes at M̄ have a rather large 
 for on both Cu(111) and
Ag(111). Within the framework of the perturbation theory, Al(111) was studied using a
different interaction potential [9]. Interestingly, the two sets of perturbative methods produce
similar values for the linewidth of the Rayleigh wave for the (111) surfaces of the metals: Ag,
Cu, and Al. The table also includes the results from MD simulations for Ni(100), Ni(110),
and Ni(111). So far such results have not been obtained for Ni surfaces from either perturbative
methods or experiments. It should be noted that for Al surfaces the calculated frequencies of
the modes in table 2 are in agreement with those from ab initio calculations [32]. Ab initio
results for Cu and Ag surfaces [33, 43] also confirm the results for the frequencies of the
phonons obtained by semiempirical methods, as summarized in table 2. Also, the frequencies
for the Ni surface phonons in table 2, from MD simulations, are in good agreement with those
from lattice dynamical calculations using model force constants [34].

Table 2 shows that the linewidths calculated at 300 K from perturbation theory and MD
simulations are good agreement in most cases. This comparison becomes more difficult at
higher temperatures, as shown in a related publication [24]. With increasing temperature,
results from MD simulations show a complex behaviour which depends on the surface
geometry. On the other hand, the temperature dependence in the perturbation calculations
is limited to the temperature dependence of the phonon populations. In view of this, we can
only expect a linear dependence of the linewidth on temperature above 300 K.
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5. Conclusions

We have presented here a summary of available results for the linewidths of surface phonons
of the low-Miller-index surfaces of Cu, Ag, Ni, and Al, at several high-symmetry points in
the surface Brillouin zone. As a rule of thumb, for most surface modes, calculations based
on perturbation theory produce halfwidths of a few tenths of a THz at 300 K. This result is
in general in good agreement with those obtained in related MD simulations. There are some
exceptions such as the case of the S6 mode on Cu(100) where one obtains a large broadening
of 1.10 THz in the perturbation calculation and only 0.25 THz in the MD simulations. Modes
such as the longitudinal ones at M̄ on Cu(111) and Ag(111) also appear to have appreciable,
and differing, linewidths in the two types of calculation. It should be remembered that the
perturbative calculations do not include a shift in the frequencies of the phonons as a result
of anharmonicity, since such calculations involve the quartic term. Proper comparison with
experiments and MD simulations would require the inclusion of the frequency shifts together
with the changes in the linewidth, as a function of temperature. Nonetheless, quasi-analytic
calculations such as the ones included here provide a reasonable approach to calculating the
broadenings in the surface phonon linewidth. Such calculations are an alternative to MD
simulations, and also a test for the latter. Results obtained here are in reasonable agreement
with experimental data which are available for a few of the modes. We await experimental
results on the rest of the modes.
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